Nitric oxide activates intradomain disulfide bond formation in the kinase loop of Akt1/PKBα after burn injury
نویسندگان
چکیده
Severe burn injury is an acute inflammatory state with massive alterations in gene expression and levels of growth factors, cytokines and free radicals. During the catabolic processes, changes in insulin sensitivity and skeletal muscle wasting (unintended loss of 5-15% of lean body mass) are observed clinically. Here, we reveal a novel molecular mechanism of Akt1/protein kinase Bα (Akt1/PKBα) regulated via cross-talking between dephosphorylation of Thr308 and S-nitrosylation of Cys296 post severe burn injury, which were characterized using nano-LC interfaced with tandem quadrupole time-of-fight mass spectrometry (Q-TOF)micro tandem mass spectrometry in both in vitro and in vivo studies. For the in vitro studies, Akt1/PKBα was S-nitrosylated with S-nitrosoglutathione and derivatized by three methods. The derivatives were isolated by SDS-PAGE, trypsinized and analyzed by the tandem MS. For the in vivo studies, Akt1/PKBα in muscle lysates from burned rats was immunoprecipitated, derivatized with HPDP-Biotin and analyzed as above. The studies demonstrated that the NO free radical reacts with the free thiol of Cys296 to produce a Cys296-SNO intermediate which accelerates interaction with Cys310 to form Cys296-Cys310 in the kinase loop. MS/MS sequence analysis indicated that the dipeptide, linked via Cys296-Cys310, underwent dephosphorylation at Thr308. These effects were not observed in lysates from sham animals. As a result of this dual effect of burn injury, the loose conformation that is slightly stabilized by the Lys297-Thr308 salt bridge may be replaced by a more rigid structure which may block substrate access. Together with the findings of our previous report concerning mild IRS-1 integrity changes post burn, it is reasonable to conclude that the impaired Akt1/PKBα has a major impact on FOXO3 subcellular distribution and activities.
منابع مشابه
SILAM for quantitative proteomics of liver Akt1/PKBα after burn injury
Akt1/protein kinase Bα (Akt1/PKBα) is a downstream mediator of the insulin signaling system. In this study we explored mechanism(s) for its role in burn injury. Akt1/PKBα in liver extracts from mice with burn injury fed with (2H7)-L-Leu was immunoprecipitated and isolated with SDS-PAGE. Two tryptic peptides, one in the kinase loop and a control peptide just outside of the loop were sequenced vi...
متن کاملThe Effects of Nitric Oxide on Wound Healing in Burned Rats
Purpose: The exact role of nitric oxide (NO) in the wound has not been elucidated and the available reports are controversial. We tried to study the effects of NO on healing promotion of burns wound in rats. Materials and methods: 60 adult male rats weighing 250-270 gr. were used After induction of general anesthesia egion was exposed to 95c water for 8S in order to producing the wet burns. Th...
متن کاملAKT participates in endothelial dysfunction in hypertension.
BACKGROUND In hypertension, reduced nitric oxide production and blunted endothelial vasorelaxation are observed. It was recently reported that AKT phosphorylates and activates endothelial nitric oxide synthase and that impaired kinase activity may be involved in endothelial dysfunction. METHODS AND RESULTS To identify the physiological role of the kinase in normotensive Wistar-Kyoto rats (WKY...
متن کاملComparison of Effect of Piperine and Capsaicin with Tabata Exercise on Changes in Serum Nitric Oxide and Creatine Kinase of Kung Fu Boys
Introduction: Tabata exercise programs can produce free radicals and muscle soreness and herbal supplements may be helpful as mediators in response to oxidative damage and muscle stress. Therefore, the purpose of this study was to compare the effects of these two supplements with Tabata exercise activity on nitric oxide and creatine kinase enzyme. Methods: The research was a quasi-experimental...
متن کاملThe vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione.
It has been previously demonstrated that the vacuolar H+-ATPase (V-ATPase) of clathrin-coated vesicles is reversibly inhibited by disulfide bond formation between conserved cysteine residues at the catalytic site on the A subunit (Feng, Y., and Forgac, M. (1994) J. Biol. Chem. 269, 13224-13230). Proton transport and ATPase activity of the purified, reconstituted V-ATPase are now shown to be inh...
متن کامل